# Feasibility study of a large-scale WPT system formed by a modular structure

### Tanaka laboratory

| Leader                                        | Name              | Affiliation                 | Grade                 |  |  |  |
|-----------------------------------------------|-------------------|-----------------------------|-----------------------|--|--|--|
| 0                                             | Yusuke Kishida    | Hosei University            | Graduate Student      |  |  |  |
| 1                                             | Takahiro Ohnisi   | Tokyo University of Science | Graduate Student      |  |  |  |
| 1                                             | Miki Kaneko       | Hosei University            | Graduate Student      |  |  |  |
| 0/00                                          | Shuji Higashigawa | Hosei University            | Graduate Student      |  |  |  |
|                                               | Tomohiro Ebisawa  | Suwa University of Science  | Undergraduate Student |  |  |  |
|                                               | Yudai Fujii       | Suwa University of Science  | Undergraduate Student |  |  |  |
| 10                                            | Hotaka Yamada     | Suwa University of Science  | Undergraduate Student |  |  |  |
| Supervisor, Volt Terreba (SOVENDAL ISAS/IAVA) |                   |                             |                       |  |  |  |

Supervisor : Koji Tanaka (SOKENDAI, ISAS/JAXA)

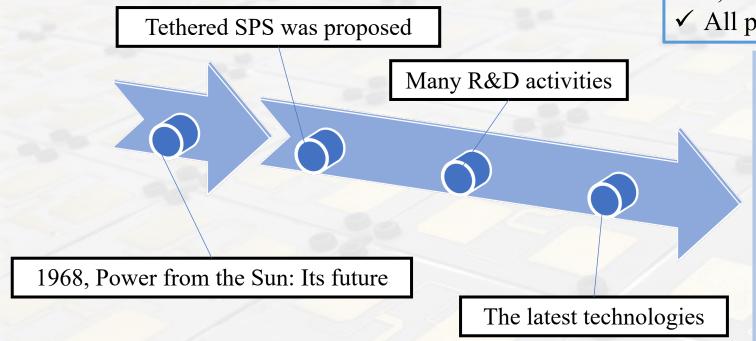
## About us



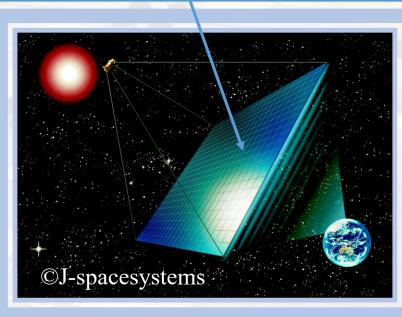
We are... "Tanaka laboratory Members"

#### What is Tanaka laboratory...?

Our laboratory is in ISAS / JAXA Our main research subjects are... 1. Study of WPT


- 2. Study of Structure of SPS
- 3. Study of Discharge Phenomena and more...

#### **Members**


Our members are from several universities. Therefore, we have many backgrounds. And we are the educational volunteer of SPS for high school students.

# Backgrounds

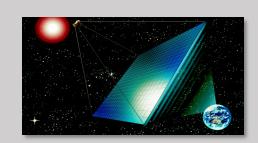
### Over 15 years have passed since the birth of Tethered SPS model, in Japan.



✓ 2,375,000 Generation/Transmission panels,
✓ All panels are equivalent spec. and independent.



#### We are facing the phase; to review the ever R&D activities, to clarify unsolved issues and promote the development toward the commercial system.


2022 International Space Solar Power Student Competition

# What is our project?

**The purposes and goals** of this project is: to clarify unsolved issues from our feasibility study, to promote the development of the WPT system,

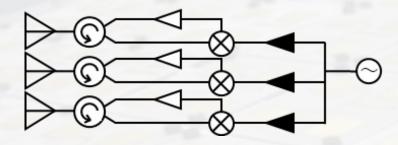
toward realizing a large-scale modular structure SPS.

### **Our steps toward goals**



### Feasibility study

Step①:Summarize the original concept of the Tethered SPS Step②:Reviewing the recent R&D activities Step③:Clarifying unsolved issues of modular WPT system




### Promotion R&D

Step(4): Apply the latest technologies for system improvement Step(5): Study of a new method regarding WPT in ISAS/JAXA

# **Recent R&D activities**

#### Hardware retro-directive



- Generate phase conjugation waves by electric circuits •
- Fast processing and scanning
- Flexibility of the frequency and functions are poor

#### Software retro-directive



- Direction finding and beam forming via signal processing
- Safety, security and other functions are available

| Ref. | Years | Description                                                                                                                       | Phase correction    |
|------|-------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------|
| [1]  | 2010  | -Position and Angle Correction (PAC) method                                                                                       | method              |
| [1]  | 2010  | -Parallel method                                                                                                                  | method              |
| [2]  | 2015  | The horizontal WPT experiment uses:<br>-The amplitude mono-pulse method,<br>-Rotating Element Electric Field Vector (REV) method. | Software<br>retro   |
| [3]  | 2019  | -The vertical WPT experiment using the drone in outdoor uses:<br>-The amplitude mono-pulse method,<br>-REV method.                | Software<br>retro 5 |

# **Recent WPT technologies**

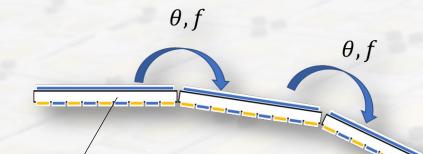
#### Software retro-directive method,

must find a target direction and adjust phases of all antennas for precise control of beam.

- Direction finding method can detect the direction of the target from pilot signal.
- Phase correction method can correct phase errors caused by antenna deformation and temperature raises.

#### **Phase correction method**

| Phase-correction methods | Descriptions                                                                    |
|--------------------------|---------------------------------------------------------------------------------|
| REV method:              | can point beam within $0.15^{\circ}$ rms. Many processing time is required [2]. |
| Parallel method:         | can detect phase errors within $1^{\circ}$ [1].                                 |
| PAC method:              | can detect phase errors within $1^{\circ}$ [1].                                 |


### **Direction-finding method**

|   | <b>Direction Finding (DF) method</b>                                                         | Descriptions                                                                |  |  |  |
|---|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|
|   | Mono-pulse method                                                                            | • will realize simplified DF,                                               |  |  |  |
|   | (phase/amplitude comparison):                                                                | • will not have a few flexibilities as compared to Software retrodirective. |  |  |  |
| 1 | <b>MUSIC, ESPRIT</b> and other methods are being studied for more precise direction-finding. |                                                                             |  |  |  |

2022 International Space Solar Power Student Competition

# Unsolved issues for current WPT technologies

We are focusing on 2 big issues of the recent technologies such as Software Retro and REV method.



Generation/Transmission panel



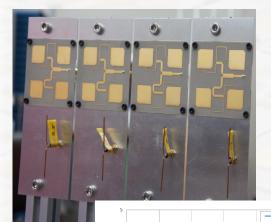
### 1. Synchronization of the phase and frequency

The reference signal must be shared among all equivalent modules, in modular structure system.

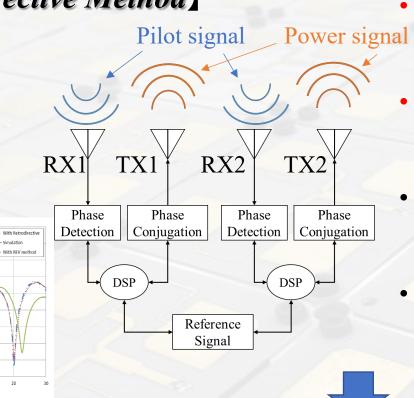
### 2. Long processing time to adjust the phases

The REV method, promising phase-correction method, requires too long processing time to steer the beam.




We consider solving these issues by: ①Applying the latest technologies, ②Installing digital signal processing.

### Solution as a new method in JAXA/ISAS


we introduce a new method in ISAS/JAXA in Japan!

### [Digital Retro-directive Method]

Angle(deg)
FIGURE 4.16: Comparison of Digital Retrodirective method with REV



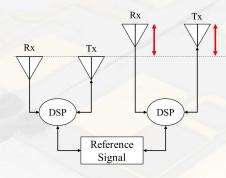
For an example,



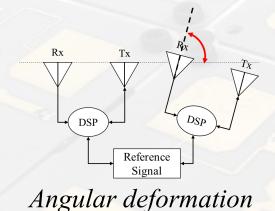
- **Digital Signal Processing (DSP)** is used for: detecting phase and generating <u>Conjugate phase</u>.
- **Synchronization** among panels is not required. (Rx antenna and Tx antenna is same number)
- Digital retrodirective method correct errors with shorter time than REV method.
- Digital retrodirective method could correct errors with the same accuracy of REV method.

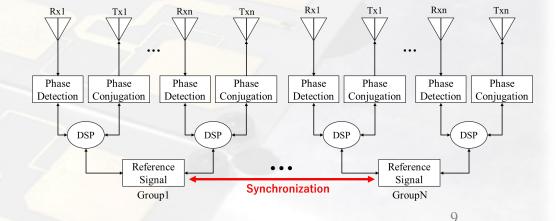
We will demonstrate this method with a simplified model.

## Future works of Digital retro-directive


Followings are issues should be confirmed and be solved of Digital retro-directive

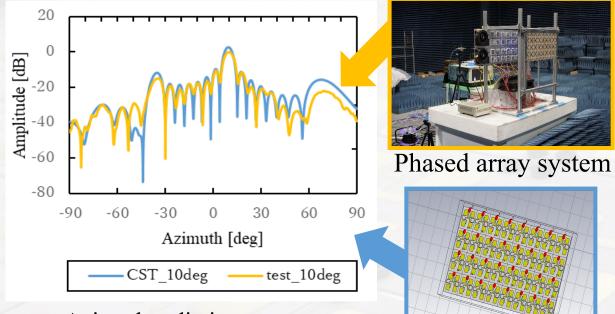
- Accuracy of phase correction with antenna deformed.
  - [Forward of backward deformation case]


The traditional study in our laboratory has achieved with the accuracy of 0.98° rms. [4].[ Angular deformation case ](Rev method: 0.15° rms. [2])


It should be confirmed.

- Provision the reference signal among groups of Tx and Rx antenna.
  - It should be confirmed.




Forward of backward deformation





# Progress from 2022 ISDC

• We performed on a preliminary experiment for demonstration of **Digital retro-directive**.



Azimuth radiation pattern with beam 10° steering

Numerical simulation by CST studio

#### <Experimental condition>

- 32 subarray with 2x2 patch elements
- 32 high power amplifiers and phase shifters
- Frequency: 5.8 GHz
- Beam steering direction:  $0^{\circ}$ ,  $5^{\circ}$ ,  $10^{\circ}$
- In anechoic chamber at Kyoto Univ.

#### <Comparation between the test and CST result>

|                     | Test   | CST   | unit |
|---------------------|--------|-------|------|
| Main lobe direction | 9.80   | 10.0  | deg. |
| MSLL                | -10.39 | -12.6 | dB   |
| HPBW                | 5.75   | 4.9   | deg. |

- The results of the test and the numerical simulation have good agreement.
- This preliminary experiment confirmed the ability to control microwave beam of this phased array system.
- Next, we will confirm future works of digital retro-directive method base on this phased array system.

## Our future process and goals toward next year

Investigation of the latest technologies.

• MIMO

• 5G

- Wireless LAN
- GPS technologies
- Challenge to apply the latest techs for WPT ⇒On going

**Next competition** 

### Feasibility study

- Summarize the traditional SPS
- Review the recent studies
- Clarify the unsolved issues ⇒Done

### Promotion of a new method in JAXA

- Development of experimental model
   ⇒Done
- Demonstrate a new method in ISAS/JAXA
- Verify a new method applied the latest technologies
- Promote the WPT system for a modular structure
   ⇒On going

Our project goals are: Feasibility study and improvement, Promotion of development for SPS.

# Reference

[1]

Takanari Narita, et al., Development of High Accuracy Phase Control Method for Space Solar Power System, 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, 2011, 157-160.

#### [2]

Tomohiro Takahashi et.al., Phased Array System for High Efficiency and High Accuracy Microwave Power Transmission, 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), 2016

#### [3]

Mihara, S., et al., Current Status of the SSPS Development and the Result of Ground to Air Microwave Power Transmission Experiment. IAC Proc., IAC-2019-C3.2.1, 2019

#### [4]

Raza Mudassir, Precise Beam Control System for Solar Power Satellite, doctoral thesis, SOKENDAI, Japan,2021