

Introduction – where we left off

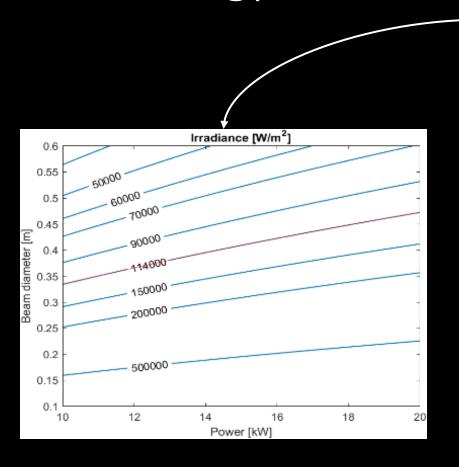
- We decided to concentrate on an application for bringing energy to the Lunar surface
- Same technology
- Same concept of orbital placement
- Different application, different market
- Different Value Proposition

Space Canad<mark>a - IAC 2022</mark>

Why the moon?

- In the next few years, cislunar space will become more crowded
- Future plans to build a lunar habitat:
 5 kW of estimated nighttime energy demand
- Shackleton Crater future moon landing site, is at the lunar south pole

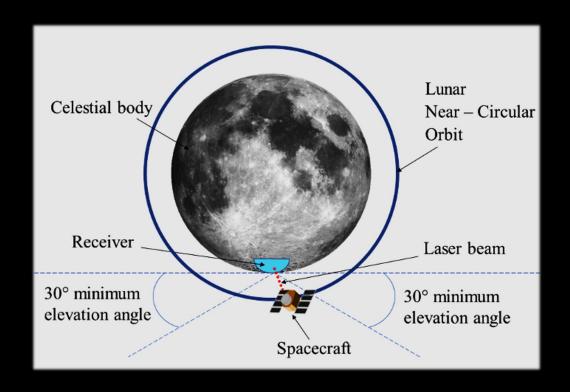
HUMANITY'S RETURN TO THE MOON

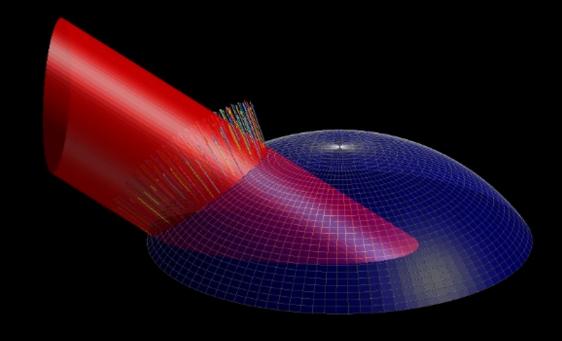


ORiS's solution

- Frozen orbits: candidate orbits and choice of the optimal configuration
- The objective of this presentation
 - System's main features
 - Receiver analysis
 - Laser features such as power output, collimation, irradiance
 - System feasibility, trade-off study

Technology


• Design process:


- laser energy output: higher than for spaceto-space applications
- receiving technology: Photonic Power
 Converters & monochromatic photovoltaic cells
- Pointing accuracy
- EPS system sizing

Calculations

- Receivers on the lunar surface → maximum size estimation
- Receiver shape optimization to minimize loss

Conclusions

- Figures of merit
- Trade off analysis

Table 5. Altitude trade-off study

Altitude	Energy in one year	Receiver dimensions	Pointing accuracy	EPS weight	Score
300	3	9	9	9	105
400	6	8	8	7	107
500	5	8	7	6	95
600	9	7	6	6	108
700	8	7	5	5	96

Thank you!