Moon and Mars Solar Power Satellites (SPS) in Comparison to Earth SPS

Tanaka laboratory

Leader	Name	Affiliation	Grade
\bigcirc	Takahiro Ohnishi	Tokyo University of Science	Graduate Student
	Miki Kaneko	Hosei University	Graduate Student
	Shuji Higashigawa	Hosei University	Graduate Student
	Yumi Kawai	Hosei University	Undergraduate Student
	Takumi Horibe	Hosei University	Undergraduate Student
	Tomu Matsutomo	Suwa University of Science	Undergraduate Student
	Naoki Warigai	Suwa University of Science	Undergraduate Student

Supervisor : Koji Tanaka (SOKENDAI, ISAS/JAXA)

We are facing the phase; to think about the migration to other stars, to consider the Power supply systems for use on there like SPS.

2023 International Space Solar Power Student Competition

What is our project?

The purposes and goals of this project is: to consider applying SPS to Moon and Mars based on SPS for Earth, to clarify technical problems to realize SPS for Moon and Mars

Our steps toward goals

Summarize the original concept of the Tethered SPS

2

3

4

Goal

Investigate environmental factors

Examine the orbits and Calculate the number of satellites

Consider suitable satellite size

Clarify technical problems of SPS on Moon and Mars with reference to the Tethered SPS

2023 International Space Solar Power Student Competition

The tethered SPS for Earth

Size	2.5km×2.375km×0.02m
Frequency	5.8GHz
Orbit	GEO
Total power generation	1GW
Directional Control	Phase Shifters
50cm square panel	23.75 million

The Environment for the Lunar SPS

- **No Atmosphere** \rightarrow No Attenuation of the MW
- **Regolith**→ Decrease of WPT efficiency, ISRU

The Environment for the Lunar SPS

- No Atmosphere \rightarrow No Attenuation of the MW
- **Regolith** \rightarrow Decrease of WPT efficiency, ISRU
- Sunlight and H₂O

 \downarrow base site : south pole region

Sun light intensity (Solar Tower $\rightarrow \blacktriangle$)

Lunar ISRU **
***ISRU-Based Robotic Construction Technologies for Lunar and Martian Infrastructures | NASA
***NASA, Industry Mature Vertical Solar Arrays for Lunar Surface | NASA

Solar Tower ***

The Environment for the Lunar SPS

- No Atmosphere \rightarrow No Attenuation of the MW
- **Regolith**→ Decrease of WPT efficiency, ISRU
- Sunlight and H₂O

Therefore, We examined

 \downarrow base site : south pole region Sun light intensity (Solar Tower $\rightarrow \blacktriangle$)

Lunar Regolith*

Lunar ISRU**

Solar Tower***

SPS for Lunar which can provide 1GW power stable to the Shackleton Crater.

*ESA - Oxygen and metal from lunar regolith **ISRU-Based Robotic Construction Technologies for Lunar and Martian Infrastructures | NASA NASA, Industry Mature Vertical Solar Arrays for Lunar Surface | NASA

The Orbits for Lunar

- Transmission to the base in the **Shackleton Crater**
- Elevation angle : ± 45 °
- Trade-off between orbit altitude and the number of satellites
- Elliptical orbit (to increase transmission time)

Apoapsis altitude [km]	Periapsis altitude [km]	Orbital period [s]	Transmission available time [s]	Transmission time ratio [%]	Required number of satellites
100	100	7067	115	1.6	62
1000	100	9817	1430	14.6	7
2000	100	13206	3360	25.4	4
3000	100	16914	5820	34.4	3
5000	100	25191	11940	47.4	3
6000	100	29783	15660	52.6	2
7000	100	34560	19620	56.8	2
10000	100	50178	33300	66.4	2

Shape of Shackleton Crater*

Simulation analysis by STK

→apoapsis 6000 km, periapsis 100 km orbit selected

Required Area of the Solar Array for Lunar

We calculated the required area of solar array to transmit 1 GW in total.

• Orbit : Apoapsis 6000 km, Periapsis 100 km

Power transmission per period [GJ/period]			
Required number of satellites			
Power transmission per satellite [GW/satellite]			
Required area of SA	SA : 35 %, Energy : 50 %	3.97	
[km ²] SA : 50 %, Energy : 80 %			

- Almost the same area as Earth SPS
 - \rightarrow Almost the same distance from the sun

Required Area of the Solar Array for Lunar

The size of Transmission antenna is **1.2 km** (5.8 GHz)

(100 GHz) (Rectenna *d*r: 500m, η: 0.9)

70 m

9

Required Area of the Solar Array for Lunar

The size of Transmission antenna is **1.2 km** (5.8 GHz) **70 m**

(100 GHz) (Rectenna $dr: 500m, \eta: 0.9$)

	Antenna Diameter [%]	Antenna Area [%]	
5.8 GHz	100	100	
100 GHz	5.8	0.3	U 100 100 100 100 100 100 100 100

Adapting the high frequency like 100 GHz brings benefits in terms of size and cost. **There are difficulties in using 100 GHz**.

The SPS for Mars Environment

Regolith

 \rightarrow Be covered

Axis

 \rightarrow Tilt 25.19 degrees

Dust storm

- → Large-scale : twice during summer Small-scale : frequently Atmospheric composition
 - →CO2 repeatedly sublimates and solidifies

Magnetic field

→Non

Landscape

→Mountains over 21 km high, Valleys over 11 km deep

11

	Mars	Earth
Rotation period	24h37min	23h56min
Orbital period	687day	365day
Mass (Earth :1)	0.1074	1
Radius [km]	3396.2	6378.1
Satellite	2(Phobos, Deimos)	1 (Lunar)
Satellite dimension [km]	Phobos:13×11×9	Moon
	Deimos:8×6×5	(radius):1737.4
Rotation axis inclination	25.19°	23.44°
[deg]		
Orbit length radius [km]	149.6M	227.9M

 <u>https://www.tesmanian.com/blogs/tesmanian-blog/starlink-mars</u>

 <u>https://ammos.nasa.gov/marswatermaps/?mission=MWR</u>

The Orbits for Mars

- Transmission to the North Pole
- Elevation angle : $\pm 45^{\circ}$
- Trade-off between orbit altitude and the number of satellites
- Elliptical orbit (to increase transmission time)

Apoapsis altitude [km]	Periapsis altitude [km]	Orbital period [s]	Transmission available time [s]	Transmission time ratio [%]	Required number of satellites
200	200	6549	119	1.8	56
5000	200	14157	4380	30.9	4
10000	200	23837	11520	48.3	3
11000	200	25966	13200	50.8	2
12000	200	28156	15000	53.3	2
15000	200	35068	20760	59.2	2
20000	200	47663	31920	67.0	2

Simulation analysis by STK

→ apoapsis 11000 km, periapsis 200 km orbit selected

Required Area of the Solar Array for Mars

We calculated the required area of solar array to transmit 1 GW in total.Orbit : Apoapsis 11000 km, Periapsis 200 km

Power transmission per period [GJ/period]			
Required number of satellites			
Power transmission per satellite [GW/satellite]			
Required area of SA	SA : 35 %, Energy : 50 %	9.56	
[km ²]	SA : 50 %, Energy : 80 %	4.18	

More than twice larger than the area of Earth SPS and Lunar SPS
 → Far from the sun

Required Area of the Solar Array for Mars

The size of Transmission antenna is

2.2 km (5.8 GHz) 128 m

(100 GHz)

(Rectenna *d*r: 500m, η : 0.9)

There is a large gap between required **Solar Array Size** and required **Transmission Antenna Size**.

Consideration ~Elliptical orbit~

Elliptical orbit

Maximum distance Moon : 6,000 km Mars : 11,000 km

Variation of WPT efficiency

2.Calculate the efficiency change.

1.Set here as max WPT efficiency point.

Minimum distance Moon : 4,763 km (74 % of Maximum) Mars : 8,937 km (77 % of Maximum)

If the size of Transmission Antenna based on the minimum distance,

Transmission Antenna

Mars : 2.2 km 🕪 1.27 km

WPT efficiency Moon : $\eta = 0.9 (1.2 \text{ km}) \implies \eta = 0.78$ Mars : $\eta = 0.9 (2.2 \text{ km}) \implies \eta = 0.76$

Consideration ~ Technical Problems ~

RF can reduce the size of the antenna \rightarrow technical problems

- 20 GHz \sim : increased circuit loss, decrease of PAE
- 90 GHz ~ : MMIC configured on a single wafer \rightarrow very difficult to realize

Electron tubes (alternative of amplifiers)

	Frequency	Output power	Efficiency
TWTA*	42.5~45.5 GHz	190 W(CW)	37 %
Gyrotron**	170 GHz	1 MW	50 %

High Power Microwave Source Gyrotron ITER

Using electron tubes instead of amplifier \rightarrow achieve higher efficiency

* Sosuke Higashibata, et.al., Q-band 190W Helix TWT with Two Stage Collector, IEEE, 2022.

** Yasuhisa Oda, et al, Development of the first ITER gyrotron in QST, Nuclear Fusion, Volume 59, No 8 (2019).

Keishi Sakamoto, "small special feature Progress of ECH·ECCD in Fusion Plasmas 3. Progress of ECH · ECCD Experiments, 3.1 Progress of ECH · ECCD Devices, J. Plasma Fusion Res. Vol.85, No.6 (2009) 351-356.

Conclusion

In this project,

- The study of
 Lunar SPS and Mars SPS
- Identified technical problems

Operating frequency [GHz]		
ontrol angle [°]	± 45	
f transmission [km]	6000	11000
Transmission per one period [GJ/period]		
Required number of satellites		
Transmission per satellite [GW/satellite]		
SA : 35 %, Energy : 50 %	3.97	9.56
SA : 50 %, Energy : 80 %	1.74	4.18
Size of transmission antenna [km]		
	frequency [GHz] ontrol angle [°] f transmission [km] or one period [GJ/period] umber of satellites or satellite [GW/satellite] SA : 35 %, Energy : 50 % SA : 50 %, Energy : 80 % mission antenna [km]	frequency [GHz]5.ontrol angle [°] \pm f transmission [km]6000f transmission [km]6000er one period [GJ/period]29783number of satellites2er satellite [GW/satellite]0.95SA : 35 %, Energy : 50 %3.97SA : 50 %, Energy : 80 %1.74mission antenna [km]1.2

~ Future Works ~

- Study of Lunar SPS and Mars SPS smaller than 1 GW
- Study orbits considering the influence of surrounding satellites
- Experiments on the impact of regolith and CO₂ on WPT
- Structural consideration of SPS when using electron tubes

Mars

Lunar

Thank you !

