

Image Credit: Endurosat 12U CubeSat Platform and Chassis Image

Analytical Cost-Optimization of Orbital Parameters and Propulsion Solutions for SPS in LEO

TEXAS SSPS

The University of Texas at Austin Aerospace Engineering and Engineering Mechanics Cockrell School of Engineering

Undergraduates

Abdulbari Agboola

Peyton Burlington

Mark Dunn

Faculty Advisor

Adam Nokes

Agenda Overview

- Introduction
- Problem and Mission
- Methods and Analysis
- Economic Results
- Conclusion

Problem and Mission

Background

Space solar power has been considered *technically feasible* since the 1970s, provided sufficient technological development in **key areas**:

- In-space large structure assembly
- High-efficiency solar energy conversion devices (photovoltaics, batteries, etc.)
- Super-heavy reusable launch vehicles

There is a **select amount** of data on the economic merit of performance parameters. This project focuses on analysis of the following **design parameters**:

Orbital Configuration

Propulsion System

For a Solar Power Satellite (SPS) in Low Earth Orbit (LEO), we shall identify the most **economical** approach considering tradeoffs between:

Figure 1: Conceptual image of a solar power transmission satellite

Methods and Analysis

Cost Optimized Orbit Analysis Approach

Preliminary Assumptions

Drag Calculation

- Spacecraft Frontal Area: 5, 25, and 125 m²
- Mission duration: 50 years
- Launch Vehicle: SpaceX Falcon 9 (\$2000/kg to LEO)
- Retail price of energy delivered: \$0.23/kWh
- Coefficient of drag, $C_D = 2.0$

- Surface emissivity = 0.92 (Z93 coating)
- Accommodation coefficient, $\alpha = 0.05$
- Dispersive collision fraction, g = 0.05

Power Attenuation Calculation

- Antenna efficiency = 55%
- Altitude-averaged atmospheric thermodynamic parameters
 - Temperature = -44.2 °C,
 - Water vapor density = 0.15 g/m^3
- Domain of analysis:
 - Frequency: [0, 50] GHz
 - Receiver Aperture Area:
 [0, 100] km²
 - Altitude: [100, 2000] km

Physical Model: Density and Drag Calculation

$$ma_{x,aero} = -\frac{1}{2}\rho V_R^2 A_{ref} C_X(\alpha,\beta,S,\sigma,T_w)$$

$$egin{aligned} & b_\infty &= ext{freestream density}, \, u_\infty \,=\, ext{freestream gas speed} \ & h_0 \,=\, ext{stagnation enthalpy}, \, h \,=\, ext{enthalpy} \ & arepsilon_r \,=\, ext{spacecraft reflectivity} \ & \sigma_{SB} \,=\, ext{Stefan-Boltzmann constant} \end{aligned}$$

Figure 3

Relating Drag to Propulsive Requirements

The following ideal gas rocket sizing equations were used for Xenon storage as a compressed gas (150 bar, 300K):

$$egin{aligned} M_{tank} \ &= \
ho_w \cdot V_{tank} \ &= \
ho_w \, \cdot \, ig(4\pi R^2 \cdot tig) \end{aligned}$$

$$t = rac{R \cdot P_{G0}}{2 \cdot \sigma_{allow}}$$

 $R = \left(rac{1}{4} \cdot V_{gas}
ight)^{1/3}$

11

TEXAS AEROSPACE ENGINEERING AND ENGINEERING MECHANICS Physical Model: Launch Cost

Assumptions:

- This model calculates the launch cost as a function of altitude and eccentricity
- Keplerian orbital mechanics.
- The initial orbit is a circular orbit of 100 km altitude ($\Delta v \sim 8$ km/s).
- 'Cost per Δv': ~\$1000 per 1 m/s (from SpaceX Falcon 9 payload to LEO launch cost) [3]

 μ = gravitational parameter r_i = initial radius at apogee r_{f} = final radius at apogee v = spacecraft speed

Physical Model: Atmospheric Attenuation & Space Loss

- Atmospheric Attenuation calculated using:
 - International Telecommunication Union (ITU-R P.676-10)

• Free Space Path Loss calculated using: $FSPL(dB) = 20 \log_{10} (d) + 20 \log_{10} (f) + 92.45$

Cost-Optimized Frequency

- Current technology with high efficiencies exist currently under 50 GHz.
- The optimal frequency is **33.67 GHz**.
- A secondary peak occurs at **15.78 GHz.**

$$G_{db}=~10\log_{10}\left(rac{4\pi\eta A}{\lambda^2}
ight)$$

Eq: Antenna Gain

14

[9]

Economic Results

Performance Data to Economics

A **Monte Carlo analysis** was used to quantify the economic merit associated with the following physical parameters for 15,000 orbital configurations for a space-based solar power system.

Results - Mission Cost

Total Mission Cost as a Function of Altitude and Eccentricity

<u>Legend</u>

- 125 m² frontal area
- 5 m² frontal area

Figure 8

Mission Cost: 2D View

Figure 9:

Results Continued

Spacecraft Projected Area [m²]	5	25	125
Optimal Orbital Altitude [km]	301	377	461
Optimal Eccentricity	~0	~0	~0
Total Projected Cost [Billions of USD]	9.38	9.73	9.94

Orbital Inclination Determination -Oblateness Perturbations

• Precession of the ascending node, Ω, due to J2.

$$\frac{d\Omega}{dt} = \frac{-3}{2} \cdot J_2 \cdot \left(\frac{R_E}{a(1-e^2)}\right)^2 \cdot \sqrt{\frac{\mu_E}{a^3}} \cdot \cos(i)$$

- Critical inclinations of 63.43 or 116.57 deg minimizes perturbative effects [58].
- The delta-v required for an inclination change of 5.99 deg, as necessary for a launch from the Pacific Spaceport Complex, is 801 m/s.

Altitude Required for Repeating Ground Tracks

$$a_{RGT} = \mu^{1/3} \left(\frac{M}{N\omega_B}\right)^{2/3}$$

 $a_{RGT} = Orbital \, Radius$ $\mu = Gravitational \, Parameter$ $M = \# \, of \, Rotations \, of \, Earth$ $N = \# \, of \, Spacecraft \, Revolutions$ $\omega_B = Rotational \, Sidereal \, Frequency [1/s]$

Summary: Resulting Orbit and Targeted Customers

Plots of Orbital Trajectory

Figure 10

- 1. Altitude: 404 km.
- 2. Eccentricity: 0.
- 3. Inclination: 63.43.
- 4. Longitude of the ascending node (LAN) contingent on specific customer's location.
- 5. Repeat period: 2 days.
- 6. Launch site: Pacific Spaceport Launch Complex (latitude: 57 deg.).

Off-the grid Canadian communities host more than 200,000 people.

- Whitehorse (latitude: 60.72 deg N).
- Yellowknife (62.45 deg N).
- Arviat (latitude: 61.1078 deg N).

Figure 11: Map of Off-the-Grid Canadian Communities [27]

Upper Atmosphere Gas Dynamic Drag - Monte Carlo Analysis at 400 km

Figure 12 [3, 37].

Optimal Propulsion Engine Given Altitude

Thank You! | Questions?

References

[1] Plasmadynamics and Electric Propulsion Laboratory, Main Website. June 2023. Available: <u>https://pepl.engin.umich.edu/project/non-classical-transport-in-low-temperature-plasmas/</u>

[2] S. Kedare and S. Ulrich, "Design and Evaluation of a Semi-Empirical Piece-wise Exponential Atmospheric Density Model for CubeSat Applications", *AIAA 2015-1589*, January 2015. [Online]. Available: <u>Design and Evaluation of a Semi-Empirical Piece-wise Exponential Atmospheric Density Model for CubeSat Applications | AIAA SciTech Forum</u>

[3] SpaceX, "Falcon 9 User's Guide," Massachusetts Institute of Technology, September 2021. [Online]. Available: http://web.mit.edu/2.70/Reading%20Materials/SpaceX%20Falcon-users-guide-2021-09.pdf. [Accessed: Month Day, Year].

[4] States - National Telecommunications and Information Administration. (n.d.). https://www.ntia.doc.gov/files/ntia/publications/january_2016_spectrum_wall_chart.pdf

[5] Range. RF signal attenuation due to atmospheric gases - MATLAB. (n.d.). https://www.mathworks.com/help/phased/ref/gaspl.html

[6] Neelima Krishna and Murthy Addanki, "Orbits Design for LEO Space Based Solar Power Satellite System", *Michigan Technological University*, 2011. [Online]. Available: digitalcommons.mtu.edu/cgi/viewcontent.cgi?article=1342&context=etds

[7] Electricity prices by country 2022. Statista. (2023, August 29). https://www.statista.com/statistics/263492/electricity-prices-in-selected-countries/

[8] Rodenbeck, C., Tierney, B., Park, J., Parent, M., Depuma, C., Bauder, C., Pizzillo, T., Jaffe, P., Simakauskas, B., & amp; Mayhan, T. (2021, December 24). Terrestrial Microwave Power Beaming. IEEE. <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9662403</u>

[9] GeeksforGeeks. (2022, May 24). How to calculate the antenna gain?. GeeksforGeeks.

[1] "The International Space Solar Power Student Project Competition," Space Canada. [Online]. Available: https://www.spacecanada.org/index.php?page=space_solar_power_competition. [Accessed: 03-Feb-2023].

[2] "Air breathing ion thrusters & low orbit satellites," YouTube, 25-Mar-2018. [Online]. Available: https://www.youtube.com/watch?v=srmtxK44YXk. [Accessed: 19-Mar-2023].

[3] J. Mankins, "SPS-ALPHA: The First Practical Solar Power Satellite via Arbitrarily Large Phased Array (A 2011-2012 NASA NIAC Phase 1 Project)"NASA [Online]. Available: https://www.nasa.gov/pdf/716070main_Mankins_2011_Phi_SPS_Alpha.pdf [Accessed: 18-Feb-2023]

[4] D. R. Jovel, M. L. R. Walker, "Review of High-Power Electrostatic and Electrothermal Electric Propulsion", Journal of Propulsion and Power, vol. 38, no. 6, Dec. 2022. [Online]. Available: <u>https://hpepl.ae.gatech.edu/sites/default/files/Review%200f%20HP%20ES%20ET%20EP_JPP%20Nov%202022.pdf</u>. Accessed: 02/18/23.

[5] M. Tisaev, E. Ferrato, V. Giannetti, C. Paissoni, N. Baresi, A. Lucca Fabris, and T. Andreussi, "Air-breathing electric propulsion: Flight Envelope Identification and development of control for long-term orbital stability," Acta Astronautica, vol. 191, pp. 374–393, 2022.

[6] K. Prathivadi et al., "Characterization of an Air-Breathing Deflagration Thruster", AIAA, 2023 SciTech Forum, [Online]. Available: www.globalauthorid.com/WebPortal/ArticleView?wd=F2BEA4612AE1FD3D30622F9011C5FC9D7043808FBAF42088. [Accessed: 03/15/2023].

[7] "Gridded ion thrusters (next-C) - glenn research center," NASA, 25-Jan-2023. [Online]. Available: https://www1.grc.nasa.gov/space/sep/gridded-ion-thrusters-next-c/. [Accessed: 19-Mar-2023].

[8] G. Xia, H. Li, Y. Ding, L. Wei, S. Chen, and D. Yu, "Performance optimization of a Krypton Hall thruster with a rotating propellant supply," Acta Astronautica, vol. 171, pp. 290–299, 2020.

[9] S. W. H. Shark, et al. "High Power Demonstration of a 100 kW Nested Hall Thruster System", AIAA Propulsion and Energy Forum, 2019. Aerojet Rocketdyne. [Online]. Available: https://arc.aiaa.org/doi/pdf/10.2514/6.2019-3809. Accessed: 02/12/23.

[10] "Our Engine," Ad Astra Rocket Company, 15-Nov-2021. [Online]. Available: https://www.adastrarocket.com/our-engine/. [Accessed: 19-Mar-2023].

[11] M. Turner, C. Coursey, E. Sinclair, T. Rodriguez, and B. Gunter, International Astronautical Congress, Dubai, United Arab Emirates, rep., 2021, https://www.spacecanada.org/docs/SPS-Builder-paper-2021winner1.odf.

[12] D. Mezzadri, K. Khirisutchalual, Fizkes, Chinaface, Y. Podshyvalov, et.al, "Istock," iStock. [Online]. Available: https://www.istockphoto.com/photos/affordable-energy. [Accessed: 19-Mar-2023].

[13] "Solaren Space Solar Power Overview," Solaren. [Online]. Available: https://www.solarenspace.com/solaren-space-solar/ssp-overview/. [Accessed: 03-Feb-2023].

[14] A. Shirozi, "Orbit simulation," HOMA. [Online]. Available: http://en.homasim.com/orbitsimulation.php. [Accessed: 19-Mar-2023].

[15] J. Low, "Satellite ground track visualizer," Observable, 05-Apr-2019. [Online]. Available: https://observablehq.com/@jake-low/satellite-ground-track-visualizer. [Accessed: 19-Mar-2023].

[16] D. Parks, "Understanding the risks of nonparticipation in Philanthropy (SSIR)," Stanford Social Innovation Review: Informing and Inspiring Leaders of Social Change. [Online]. Available: https://ssir.org/articles/entry/understanding_the_risks_of_nonparticipation_in_philanthropy. [Accessed: 19-Mar-2023].

[17] F. Hild, et al., "Optimisation of satellite geometries in Very Low Earth Orbits for drag minimisation and lifetime extension", *Elsevier*, vol. 201, pp. 340 - 352, December, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0094576522004970. [Accessed Feb. 24th, 2023].

[18] Yue Deng, et al., "Effect of the altitudinal variation of the gravitational acceleration on the thermosphere simulation", Journal of Geophysical Research, vol. 113, no. A9. Sept., 2008. Available: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008JA013081

[19] National Aeronautics and Space Administration, "Earth Atmosphere Model - Metric Units", Glenn Research Center, 2021. [Online]. Accessed: March 14th, 2023. Available: <u>https://www.grc.nasa.gov/www/k-12/airplane/atmosmet.html#:~:text=The%20sun%20heats%20the%20surface.and%20decreases%20as%20altitude%20increases.</u>

[20] G. Koppenwallner, "Satellite Aerodynamics and Determination of Thermospheric Density and Wind", AIP Conference Proceedings, vol. 1333, no. 1, May, 2011. [Online]. Available: https://aip.scitation.org/doi/abs/10.1063/1.3562824. [Accessed: March, 17th].

[21] Kopp G., "Magnitudes and timescales of total solar irradiance variability. J. Space Weather Space Clim.", 6, A30, 2016, DOI: 10.1051/swsc/2016025.

[22] Blue Canyon Technologies, "Power Systems", 2023. [Online]. Available: https://www.bluecanyontech.com/static/datasheet/BCT_DataSheet_Components_PowerSystems.pdf. [Accessed: 03/16/23].

[23] R. Welle, "Propellant Storage Considerations for Electric Propulsion", The Aerospace Corporation, Semantic Scholar, 2008. [Online]. Available: https://www.semanticscholar.org/paper/Propellant-Storage-Considerations-for-Electric-Welle/929ea5282a358381b61051c4cb870861b826c11c

[24] G. Sutton, "Propellant Tanks", in Rocket Propulsion Elements, Wiley, Ed. 7, New York, NY, USA: 2001, pp. 211 - 218.

[25] Flock, W.L., "Propagation Effects on Satellite Systems at Frequencies Below 10 GHz: A Handbook for Satellite System Design, NASA-RP-1108, December 1983, pp. 3-20.

[26] "State of the Art Small Spacecraft Technology", NASA, Ames Research Center, Moffet Field, CA, 2023. [Online]. Available: https://www.nasa.gov/sites/default/files/atoms/files/2022_soa_full_0.pdf

[27] Canada Energy Regulator, Market Snapshot: "Overcoming the challenges of powering Canada's off-grid communities", 2018. [Online]. Available: <u>CER – Market Snapshot: Overcoming the challenges of powering</u> Canada's off-grid communities (cer-rec.gc.ca).

[28] M. Hametz, et al., "Analysis of Reentry into the White Sands Missile Range (WSMR) for the LifeSat Mission", 1991. [Online]. Available: 19930015528.pdf (nasa.gov), Accessed: 04/07/2023.

[29] European Space Agency, "Art and Space Debris Cross Trajectories at Space Waste Lab", 2018. [Online]. Available: https://blogs.esa.int/cleanspace/2018/10/02/art-and-space-debris-cross-trajectories-at-space-waste-lab/

[30] "12U CubeSat platform Cubesat platforms," CubeSat by EnduroSat, 28-Mar-2023. [Online]. Available: https://www.endurosat.com/cubesat-store/cubesat-platforms/12u-cubesat-platform/. [Accessed: 14-Apr-2023].

[31] "LISA Pathfinder," Lisa Pathfinder. [Online]. Available: https://www.eoportal.org/satellite-missions/lisa-pathfinder#drs-disturbance-reduction-system. [Accessed: 16-Apr-2023].

[32]T. A. Bond and J. A. Christensen, NSTAR Ion Thrusters and Power Processors, Nov. 1999.

[33]"Phased array," Wikipedia, 16-Mar-2023. [Online]. Available: https://en.wikipedia.org/wiki/Phased_array. [Accessed: 16-Apr-2023].

[34]H. P. F. Mailonline, "NASA has a spacecraft cemetery where it buries satellites," *Daily Mail Online*, 23-Oct-2017. [Online]. Available: https://www.dailymail.co.uk/sciencetech/article-5007681/Nasa-spacecraft-cemetery-buries-satellites.html. [Accessed: 16-Apr-2023].

[35]J. E. Polk, R. Y. Kakuda, J. R. Anderson, J. R. Brophy, V. K. Rawlin, J. Sovey, and J. Hamley, "In-flight performance of the NSTAR Ion Propulsion System on the Deep Space one mission," 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484), Feb. 2000.

[36]"NASA Solar Technology Application readiness," Wikipedia, 23-Nov-2022. [Online]. Available: https://en.wikipedia.org/wiki/NASA_Solar_Technology_Application_Readiness. [Accessed: 16-Apr-2023].

[37]J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, "NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues," Journal of Geophysical Research: Space Physics, vol. 107, no. A12, Dec. 2002.

[38] D. M. Goebel and I. Katz, "Fundamentals of Electric Propulsion," JPL Space Science and Technology Series, 2008.

- [39] D. Bushnell, R. Moses, and S. Choi, "Frontiers of Space Power and Energy," Jul. 2021.
- [40] S. Mungiguerra, G. Zuppardi, L. Spanò Cuomo, and R. Savino, "Effects of solar panels on aerodynamics of a small satellite with deployable aero-brake," Acta Astronautica, vol. 151, pp. 456–466, 2018.
- [41] C. Rapisarda, "Modelling and simulation of atmosphere-breathing electric propulsion intakes via direct simulation Monte Carlo," CEAS Space Journal, vol. 15, no. 2, pp. 357–370, 2021.

[42] D. Wilkes, L. Hummer, and J. Zweiner, "Thermal Control Surfaces Experiment," NASA Technical Reports Server, Jan. 1992.

- [43] World Bank Group, "Report: Universal Access to sustainable energy will remain elusive without addressing inequalities," World Bank, 04-Jun-2021. [Online]. Available: https://www.worldbank.org/en/news/pressrelease/2021/06/07/report-universal-access-to-sustainable-energy-will-remain-elusive-without-addressinginequalities#:~:text=Nigeria%2C%20the%20Democratic%20Republic%20of,to%20759%20million%20in%202019. [Accessed: 16-Apr-2023].
- [44] C. E. R. Government of Canada, "Canada energy regulator / Régie de l'énergie du Canada," CER, 08-Jul-2022. [Online]. Available: https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/marketsnapshots/2018/market-snapshot-overcoming-challenges-powering-canadas-off-grid-communities.html. [Accessed: 16-Apr-2023].
- [45] "Air breathing ion thrusters & low orbit satellites," YouTube, 25-Mar-2018. [Online]. Available: https://www.youtube.com/watch?v=srmtxK44YXk. [Accessed: 19-Mar-2023].
- [46] I. Merino-Fernandez, S. L. Khemchandani, J. del Pino, and J. Saiz-Perez, "Phased array antenna analysis workflow applied to gateways for Leo Satellite Communications," Sensors, vol. 22, no. 23, p. 9406, 2022.

[47] Y. V. Polezhaev and N. V. Pavlyukevich, "Accommodation coefficient," A-to-Z Guide to Thermodynamics, Heat and Mass Transfer, and Fluids Engineering, Feb. 2011.

- [48] N. Hall, "Earth atmosphere model metric units," NASA, 13-May-2021. [Online]. Available: https://www.grc.nasa.gov/www/k-12/airplane/atmosmet.html. [Accessed: 16-Apr-2023].
- [49] N. Souhair, M. Magarotto, R. Andriulli, and F. Ponti, "Prediction of the propulsive performance of an atmosphere-breathing electric propulsion system on cathode-less Plasma Thruster," Aerospace, vol. 10, no. 2, p. 100, 2023.
- [50] T. G. Roberts and S. Kaplan, "Cost for space launch to low Earth Orbit- Aerospace Security Project," Aerospace Security, 01-Sep-2022. [Online]. Available: https://aerospace.csis.org/data/space-launch-to-lowearth-orbit-how-much-does-it-cost/. [Accessed: 16-Apr-2023].
- [51] "Electricity prices around the world," GlobalPetrolPrices.com. [Online]. Available: https://www.globalpetrolprices.com/electricity_prices/. [Accessed: 16-Apr-2023].
- [52] J2 perturbation. [Online]. Available: https://ai-solutions.com/_freeflyeruniversityguide/j2_perturbation.htm. [Accessed: 16-Apr-2023].
- [53] J. Low, "Satellite ground track visualizer," Observable, 05-Apr-2019. [Online]. Available: https://observablehq.com/@jake-low/satellite-ground-track-visualizer. [Accessed: 16-Apr-2023].
- [54] A. Thompson, "Modeling interference from CubeSat Electric Propulsion Systems," Scilight, vol. 2022, no. 25, p. 251107, 2022.
- [55] "The International Space Solar Power Student Project Competition," Space Canada. [Online]. Available: https://www.spacecanada.org/index.php?page=space_solar_power_competition. [Accessed: 03-Feb-2023].
- [56] D. R. Jovel, M. L. R. Walker, "Review of High-Power Electrostatic and Electrothermal Electric Propulsion", Journal of Propulsion and Power, vol. 38, no. 6, Dec. 2022. [Online]. Available: https://hpepl.ae.gatech.edu/sites/default/files/files/Review%200f%20HP%20ES%20ET%20EP_JPP%20Nov%202022.pdf. Accessed: 02/18/23.
- [57] L. Qian, "Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24", *Geophysical Research Letters*, vol. 33, no. 23, December 2006. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2006GL027185

The University of Texas at Austin Aerospace Engineering and Engineering Mechanics Cockrell School of Engineering