DEVELOPMENT GROUP

Lewis Longbottom | Kristopher Lowry | Sean Davis | Jeremy Martinez | Joseph Davis | Rudy Salomon

Advised By: Dr. Pablo Rangel (TAMUCC) & Dr. Paul Jaffe (Information Capacity)

DEVELOPMENT OF A RADIO FREQUENCY - PHOTOVOLTAIC (RF-PV) MODULAR DEPLOYABLE GROUND POWER RECIEVER FOR APPLICATION IN A SPACE SOLAR POWER ARCHITECTURE

- With space solar, unfiltered, continuous sunlight is collected and converted into DC power through photovoltaics by large satellites in space.
- This power is then used to drive a power beaming system, transmitting a microwave beam to receivers on the Earth.
- Receivers then collect the beamed energy and convert it back to useable electricity for use on a grid.

Problem

Both defense and disaster recovery applications of space solar would almost certainly require the development of a tactically deployable power receiver to satisfy operational and transport requirements in theatre, no work has been done in this area to date.

Objective

In a novel approach to wireless power reception in a space solar power system, a modular deployable ground power receiver (MDGPR) will be developed, integrating both microwave energy (RF) and solar energy (PV) collection and conversion elements.

Wireless Power Transmission Demo

Purpose: A table-top demonstration of wireless power transmission and reception.

Why RF & PV?

- Our solution utilizes unused area within the satellite receiving aperture on top of containers
- The goal is to maximize to collection of available energy using multiple renewable sources to eliminate a single point of failure in power generation
- It's a modular integrated solution that can grow with demand

Applications Considered

Defense and Energy Security

- The need to reduce logistics burdens and minimize energy resupply risks
- The transition to autonomous systems and crewless facilities
- The need to increase energy architecture flexibility

Disaster Response and Recovery

- Quickly restore electricity to critical infrastructure and recovery operations.
- Resilient, reliable power distribution day or night in any weather condition.
- Deployable and scalable power output to bring increasing power restoration during a period of need.

Requirements Summary

- Stakeholder (Defense Logistics Agency, DoD, Red Cross)
 - System setup deployment by no more than 5 personnel
 - Receiver shall operate in remote desert/tropical environment as well as mitigate obstacles and changes in elevation.
 - Modules shall be maneuvered by military helicopter, forklift, and flatbed loader
 - System shall have a protected perimeter with access control
- Project (MDGPR)
 - Convert RF energy at 5.8GHz and solar energy to DC power at 60Hz
 - Store the power within the module (container) for 12-hrs usage at 50% normal load
 - Output power of building block system (10 containers) shall be no less than 200kW (100 person – small forward operating base)
 - Each module shall be packaged in a standard 20-ft ISO shipping container
 - Receiver shall self-package without human intervention (self-retract)

Design Criteria

Modularity

Complexity

Deployability

Cost

Stability/ Mechanical Safety

Temperature Control

PV Panel Integration

Selected Concept

"Gullwing" container w/front and no rear door

Reasons:

- Maximum PV collection area
- Front door access allows for access without the need for a large area
- Through container passive cooling
- Possible spin-off applications

Structural Modifications Needed:

- Roof frame
- Gullwing door
- Gullwing door PV sub-frame
- Integrated battery pack mounts

Assumptions

- Rectenna PCB panel is flexible and can be spooled on a 6" diameter shaft
- Average intercepted power density of 50W/m²
- Each container has a receiver area of 4m x 100m (400m²)
- 20,000W power output per container (50W/m²)
 - 10 Containers = 200-kW
- IEEE Std C95.1 2005; 3 GHz to 300GHz
 - Controlled area: 100 W/m²

Case Study: COP Hanson

Avg power density: **50 W/m²** (assumption)

Number of Containers: 10

Deployed Receiver (ea container)

• Length: **60m**

• Width: **4m**

Power available: 12,000 W

(per container)

Power available: 120,000 W

(case study)

**not including PV integration

Publicly Available Information, Decommissioned Base

The Container Module

The Rectenna Spool

Integrated Battery Power Storage

Capability to house:

Batteries(x4) – 13.5kW (each)

Spool Frame Side View

View of MDGPR

Set of 10 MDGPR's

Spool Frame Left

Printed Rectenna Array

- Use of circularly polarized (CP) folded dipoles.
- Circular polarity is necessary as the source of transmission will be orbiting overhead.
- Requires half of the number of rectifying antennas in a given area verses that of a linearly polarized (LP) array.
- A flexible, printed array will make up the spooled receiver panel.

Tested rectenna array by Strassner and Chang

The PV Swivel Panel

Approximately 2000-W of Power Generation Per Door (x2) Doors = 4-kW Per Container 10 Containers = **40-kW Added Power To System**

PV Panel Deployment

Container Cost Estimate

- Custom Container: \$5,000 (base) + \$5,000 (mods) = \$10,000
- 4 Batteries: \$15,000 each = \$30,000
- Spool Frame: \$5,000
- Spool Drive System: \$2,000
- Total: \$47,000
- 10 Container Cost: \$470,000 equivalent to ~94,000 gallons of fuel at \$5/gallon
- **Rectenna cost not included

System Deployment

- Deployment site is scanned by small UAS, and cleared of major debris
- Containers are airlifted or unloaded to the predetermined location
- 3. Gullwing doors are unlocked and opened
- 4. Manually rotate the PV panel sub-frame 180deg
- 5. Center of container is located and marked
- 6. A line 90 degrees to container side is marked out a predetermined length
- 7. ATV hooks-up to the receiver and drives down the line
- 8. Retract the rectenna with remote control

Design Strengths

- Simple reliable structure to build in short time on a tight budget
- Easy to transport using existing methods
- A spool is a safe and reliable means of deployment
- Gullwing PV swivel door design is novel and could have spin-off applications

Future Work

- Design a small flexible thin-film rectenna
- Fabricate and integrate a ¼ scale rectenna on the spool
- Integrate sun sensor into Gullwing Door mechanism
- Install PV panels on swivel doors
- Build full-scale prototype

Challenges with Developing the Ground Component

- No significant development or manufacturing activity done to date
- Prototyping costs could be high
- System needs to flexible enough to satisfy many different applications to be viewed favorably amongst stakeholders
- Power demand varies significantly with application and may not be suitable for some

Any Questions?

Visit our project on Facebook @sspdevelopmentgroup

Thanks to Our Sponsors

Family and Friends

BACKUP

		Useable Volum	e In Shippir	ng Container Fo	r Reciever		
	m	ft	in		m³	ft³	in³
Length	4.50	14.76	177.17	Volume	20.19	713.13	1,232,296
Width	2.01	6.58	78.95		3		
Height (avail)	2.24	7.34	88.10			T	
imput bidifficter	or Sugir a	nd Deployed Lei	ngth Desire	d		$_{o} = \frac{1}{\pi}$	$+D_i^2$
	or snan a	na Deblovea Lei	nøth Desire	d		9	ν_i
Maria de la compansión de	m m	ft ft	in	d	-	η π	ı D _i
Diameter (spool) D				max available (h		ο √π	i D _i
Harris and the	m	ft	in		eight)	ν π	•
Diameter (spool) D Diameter (shaft) D.	m 2.24	7.35	in 88.19	*max available (h	eight)	$=\frac{\pi(D_o^2-L)}{4L}$	•
Diameter (spool) D Diameter	m 2.24 0.10	7.35 0.33	in 88.19 4.00	"max available (h	eight)	ν π	•

Input Desired Panel Thickness					
	in	ft	m		
Desired Panel		250000	22.650		
Thickness	0.50	0.04	0.01		

Panel Material Mass per m² (kg): Total Mass or Reciever Panel:

ransmitted (Output)	Area of Transmitter	Wavelength	Far Field Distance	Area of Reciever	Diameter of Receiver	Diameter of Transmitter
(GW)	$A_{\varepsilon}(km^2)$	λ (mm)	D(km)	A _r (km ²)	d, (km)	d' (w)
	143.9	51.8	7066.7	1.44	0.04	428
(kW)	$A_{\epsilon}(m^2)$	λ(m)	D(m)	A _r (m ²)	d, (m)	
1,300,000	143872.4	0.0518	7066738.7	143.53	42.47	î.
(GW) kW)	(Output) GW) A _k (km²) 143.9 kW) A _k (m²)	(Output) Transmitter GW A _ξ (km²) λ (mm) 143.9 51.8 kW A _ξ (m²) λ (m)	(Output) Transmitter Distance	(Output) Transmitter Output Output	

Summary of determined dimensions						
	m	mm	ft	in		
Dralled	1.28	1,275.64	4.19	50.22		
Dekaft	0.10	101.60	0.33	4.00		
Panel	0.01	12.70	0.04	0.50		
Deployed Panel Length	100.00	100,000.00	382.10	4,585.20		
Deployed Area (m²)	m²	6	Power Density Selection	Output per Container:		
[per	450.00		50	22,500.00		
Veight of Rectenna on Spool (kg) [2kg/m²]:	900.00		Power Desired (V)[see input power req table):	200,000		
Veight of Shipping Container (kg) Jempty w/	4000		Required Number of Shipping	9		
Gross Veight of Container w/Array (kg)[subj. to change]:	4900					

Image References

- Slide 23: https://www.tesla.com/powerwall
- Rectenna Array Design: https://images.app.goo.gl/VNuUbSv5RH4B1aU4A
- Paul Jaffe Presentation: https://www.youtube.com/watch?v=V5SMF9p-4Q0