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LITERATURE GAP

SPSs

(Solar Power Satellites)
main studies

Re-entry Mission analysis



MAIN GOALS

Develop a framework to simulate the evolution of the space environment with
SPSs, for space sustainability:

- Better quantifying the risk (encountered & induced) for an SPS mission

- Developing a custom breakup model

- Defining some metrics to assess the environmental impact of an SPS



METHODS

Framework for space missions' risk and impact estimate.
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METHODS

Collision Likelihood

Definition of adequate PDF
(Probability Density Functions) to
better account for SPSs’
geometry position uncertainty.

Defined against a snapshot of
the space environment.

*tailored for large space structures
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METHODS

LEO Reticular Ring (CFRP truss) — 3D Truss
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*tailored for large space structures



METHODS

Health metrics

Definition of a series of metrics
capable of quantifying the
consequence of fragmentation
events at certain orbital shells.
These allow measuring both
fragments’ spreading and the
new risk for other missions.

This method is applicable to any space mission in LEO / GEO orbit
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NESSY evolutionary model for LEO and GEO regimes

Y. Wang, P. De Marchi, and M. Vasile, “A Stochastic Dynamic Network Model of the Space Environment”,
Advances in Space Research, Sept. 2025

Payloads: CAM + PMD

Non-manoeuvrable objects

Upper-stages

Fragments: small (1mm < d) & major (d > 10cm)
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NESSY network model representation.



METHODS
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NESSY network analysis

Framework of a series of metrics for the analysis / forecast of
the effects of the critical events in space along time

Spatial connectivity: capability of a collision event can
spread inside the network

= 2%

Local connectivity: capability of an event related to a
single site can spread through the neighbourhoods

Ri = Rp,+ Ry, + R, + Ry,
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NESSY evolution analysis for LEO and GEO regimes

LEO) Different SSOs 3 reflectors Validation

- nominal LEO evolution: validated with
MOCAT MIT (1)

- nominal GEO evolution: compared with
Ref. 2

h,,,= 567, 894, 1262 km

Station keeping: 7 years
Decay @ max drag

Major objects population
Satcat, ESA DISCOS (2023)
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MAIN RESULTS

LEO regime: altitude sensitivity analysis (SPS, no collision avoidance)
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NESSY network analysis

Spatial Connectivity - 3 reflectors (no CA)

—— Baseline
——R 560 km
——R 890 km
—R 1200 km

10 20
Time [years]

30

Spatial connectivity o’

Settings:
- Objectsd>10cm

- No collision avoidance

This indicator provides a global idea of the
connectivity of the network in time.

Introducing the SPS increases the global
connectivity of the environment. The gap between
the two scenarios decreases in time because of
the decrease of the average objects' dimension,
but always with a general increasing trend.



MAIN RESULTS

NESSY network analysis

Local Connectivity - 3 reflectors (no CA)
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Settings:
- Objectsd>10cm

- No collision avoidance

This indicator provides the information of the
connectivity of the local site considered (the one
with the reflectors).

The huge increase in the reflector-scenario
connectivity coincide with the period in which the
SPS performs orbit maintenance and remainsin
the same node of the network. SPSs decay after 7
years makingthe local connectivity dropping but
remaining higher than the baseline case without
reflector.



CONCLUSIONS
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The current pipeline allows:

* an adequate modelling of SPS collision risk and fragmentation estimate
* toassessindetailthe consequences of impacts on all the other orbital regions

* to assist operatorsin the orbit selection for a certain mission



FUTURE WORKS
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* Further analysis of the breakup model improvements
 “Special local connectivity” analysis (SPS follow-up)
* Analyse the impact of small fragments on connectivity

* Include highly eccentric orbit for SPSs & cislunar orbits analyses
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