

SOLAR POWER SATELLITE BUILDER CONCEPT

By:

Miles Turner Carson Coursey Ethan Sinclair Thomas Rodriguez **Dr. Brian Gunter**

Agenda

Turner et. al, Solar Power Satellite Builder Concept, Space Generation Congress, Dubai, UAE, 2021

Modular Development of an SPS Using Small Satellites

WHAT:

• Solar Powered Satellite (SPS): Large Space Structures that orbit a celestial body and relay collected solar energy to a ground location via millimeter waves or microwaves.

WHY:

- Renewable energy source
- Transfer energy to any ground location
- Nearly limitless supply of energy source **HOW:**
- Built using:
 - Small satellites will be sent up to space to help construct and maintain SPS through a modular design method
 - Satellites will assemble semi-autonomously

Assembly Method

Free-flyer approach

- Each builder satellite is an independent operating spacecraft
- Requirements:
- Builder need flight critical systems (propulsion, power, ACS, etc.)
- Specific degree of intelligence
- Benefits:
- Allows integrated modular assembly using ridesharing
- Spreads costs of an SPS system over time
- Allows SPS systems to manipulate design

Turner et. al, Solar Power Satellite Builder Concept, Space Generation Congress, Dubai, UAE, 2021

Semi-autonomous Assembly Method

Builder Concept

- Mass*: Approx. 200kg
- Launch Size: 1.5 X 0.5 X 0.5 meter
- Fully Deployed Size: 1.5 X 1.5 X 0.5 meter
- 4 Electromagnets
- Simple base system architecture
- Interchangeable specialized system architecture
 - Extendable Mirrors
 - Solar Panels
 - RF Receiver/Transmitter
- Cost*: Approx. \$250,000

*Will vary with types of power storage devices/specialized systems

Builder Satellite ready for Launch

Builder Satellite with Electromagnets and Specialized Systems Deployed

Key System: Electromagnet Capabilities

- A reduction could be made in the dependency for precision sensors and thrusters commonly used in spacecraft maneuvers such as docking
- Ability to attract and repel spacecraft to another spacecraft becomes as simple as varying the electromagnetic field
- Containing minimal mechanical mechanisms and having the ability to be inexpensive,
 lightweight, and easy to manufacture
- Inductive coupling capabilities to allow for wireless energy transfer

Concept of Operations

LEO Case Study

<u>Scale</u>

- One SPS Station: Approx. 1000 m²
- Number of Builder Satellites to build 1 SPS station: Approx. 450

<u>Why</u>

- The size of the SPS to be built can be reduced since the transmission losses of sending energy to a target location are lower at smaller distances
- More satellites can be delivered to LEO on a shorter timeline and at a lower cost than MEO and HEO
- **Rideshare** opportunities are widely **available at LEO** allowing ease of replacement and integration of new satellites.

Builder satellite with solar panels and RF transmitter

Launch Phase

Initial Setup for 1000 m² SPS station

Altitude: Approx. 1500 km

Falcon 9 rocket

- Number of Launches: 4
- Approx. **115** satellites per launch
- **CO₂ Footprint per Launch*:** 400 Metric Tons CO₂
- Cost per Launch*: \$62,000,000
- Total CO₂ Footprint: 1600 Metric Tons CO₂
- Total Cost per SPS material: \$115,000,000

Total Cost for Building SPS: Approx. \$363,000,000

*Using 2021 data, values are expected to decrease over time

Builder Satellites in launch configuration

Energy & CO2 Calculations

Solar Cell

Silicon:

- Total energy transfer efficiency: 8%
- Total Power Received: Approx. 100 KWh
- Total CO₂ Offset: 40 kg/h

Gallium Arsenide:

- Total energy transfer efficiency: 16%
- Total Power Received: Approx. 220 KWh
- Total CO₂ Offset: 90 kg/h

Solar Constant: 1380 watt/m² Amount of CO₂ per KWh: 0.417 kg/KWh

Factors Affecting Power Collection	Efficiency
Error of Sun-Pointing	0.99
Gap of Solar Cells	0.85
Angle of Sunlight	0.958
Space Environment Effect	0.90
Voltage Conversion in Antenna	0.95
Consumed by Service Devices	0.999
Microwave Generator	0.85
Microwave Regulation	0.98
Microwave Transmission	0.90
Receiving Antenna	0.90
Rectifier Circuits	0.85

Factors affecting power collection on ground site

Energy Generation from SPS

CO2 Offset from Developing SPS

Conclusion

One 1000 m² SPS station

- Total Cost: Approx. \$363,000,000
- Power Generation*
 - Silicon solar cells: Approx. 100 kwh
 - Gallium Arsenide solar cells: Approx. 220 kwh
- CO₂ Offset
 - Silicon solar cells: Approx. 40 kgs/hr
 - Gallium Arsenide solar cells: Approx. 90 kgs/hr
- Years to offset CO₂ footprint
 - Silicon solar cells: Approx. 9 years
 - Gallium Arsenide solar cells: 4 years

*Assumes solar panel is in total sunlight total

1000 m² Solar Power Satellite system

Moving Forward

LEO SPS

- Looking at optimal orbit trajectories to use LEO SPS
- Looking at how many LEO SPS are needed to provide constant energy

Spacecraft design for modular development

- Research spacecraft assembling and disassembling using electromagnets
- Research the use of electromagnets transferring energy in space
- Optimize builder satellites mass to surface area ratio

Thank You

Turner et. all, Solar Power Satellite Builder Concept, Space Generation Congress, Dubai, UAE, 2021