DEVELOPMENT OF AN RFID SYSTEM FOR SPS-ALPHA

Contributors: Chukwuma Odigwe and Hassan Nisar

Faculty Advisor: Dr. Paul Jaffe

OBJECTIVES

RFID Implementation:

- SPS-ALPHA Structure
- RFID Technology
- Applications in SPS-ALPHA architecture
 - Part Identification
 - Location Referencing

Why Space Solar

- No atmospheric attenuation of sunlight
- No Day and Night cycle
- No weather losses

SPS-ALPHA overview

Modules and Assemblies

Table 5-2 Crosswalk from Modular Elements to Key Assemblies

	Key Assemblies*						
Modular	Primary	Solar	Primary	Connecting	Propulsion &	Modular	
Elements	Array	Reflector	Structure	Truss	Attitude	HexBot	
	Assembly	Assembly	Assembly	Assembly	Control	Assembly	
					Assembly		
HexBus	×	X	x	x	x	×	
Interconnect	×	X	X**	X	X		
HexFrame		X	X	X			
RDM Module		X					
SPG Module	X				x		
WPT Module	X						
PAC Module					X		
MARE Arms		X**			X**	×	

^{**} As noted, the Power/Transmitter Array comprises multiple copies of the Primary Array Assembly, and is not listed separately

^{*} This Module / Assembly combination may / will require tailoring of the Module involved

Modular Autonomous Robotic Effectors (MARE)

Radio Frequency Identification (RFID) Technology

- Capable of sending data short distances
- Currently used in the ISS

Types of RFID

- Passive and active RFID tags
- Passive RFID tags do not require an internal battery; active RFID tags do
- Read only and Read-Write tags

How RFID is used

- RFID system consists of a reader and a tag
- Reader sends an electromagnetic signal to tag
- Tag sends data back by switching its input impedance between two states (high and low)

RFID Tag Selection

Passive RFID Tag Ranges

	Frequency	Transmission Range
Low Frequency	125 kHz	Less than 1 foot
High Frequency	13.56 MHz	Up to 3 feet
Ultra High Frequency	865 to 960 MHz	30+ feet
Microwave	2.4 to 2.5 GHz	100 + feet

Why use RFID?

- Can be very small-capable of being embedded in SPS-ALPHA components
- Cost-effective
- Long-lasting
- Can be used in harsh environments
- Fast read & write time

Example RFID Components

- AMS SL13A RFID Sensor Tag:
 - Operates at 13.56 MHz
 - Capable of operating from -40°C ~ 110°C
 - 1 kB writable memory
- Texas Instruments TRF7960A Reader/Writer IC:
 - Operates at 13.56 MHz
 - Capable of operating from -40°C ~ 110°C

Part Identification System

- 8 different modules
 - Need at least 3 bits to represent them.
- 6 different assemblies
 - Need at least 3 bits to represent them.
- 4 byte Unique ID

00000101 =

Representing Location

Part Identification System Data Structure

Byte width:1288744444411ParityOperations LogZ PosY PosX PosUnique ID FieldAssembly FieldModule Field

Operations Log

Structure of Operations Log Entries

Byte Width:	8	4	1	1
	MARE ID	Time	Damage	Health

Structure of the Time Field

Bit Width:	12	4	5	5	6
	Year	Month	Date	Hour	Minute

Error Correction

- Reed-Solomon error correction code
 - RS(255,223), k = 223 symbols , 2t = 32 symbols
 - 8-bit wide symbols

Future Work

RFID Tag Interference

Conclusion

- SPS-ALPHA Structure
- RFID Technology
- Applications in SPS-ALPHA architecture
 - Part Identification
 - Orderly in-space assembly of SPS-ALPHA
 - Easier navigation and maintenance of satellite once constructed

Questions?

References

"Advanced RFID Measurements: Basic Theory to Protocol Conformance Test." National Instruments, National Instruments, 19 Dec. 2013, www.ni.com/tutorial/6645/en/.

Ashish. "What Are Geosynchronous & Geostationary Satellites? What's The Difference?" Science ABC, Science ABC, 9 Feb. 2018, www.scienceabc.com/nature/universe/what-is-a-geosynchronous-satellite-and-how-is-it-different-from-a-geostationary-satellite.html.

Bacon, John B. "Radio Frequency Identification (RFID) in Space." NASA Technical Reports. Houston, Texas, US.

- Brandt-Erichsen, David. "National Space Society." National Space Society, National Space Society, 12 Oct. 2011, space.nss.org/sps-alpha-the-first-practical-solar-power-satellite-via-arbitrarily-large-phased-array/.
- David, Leonard. "SPS-ALPHA." Space.com, Space.com, 6 Apr. 2012, David, Leonard. "SPS-ALPHA." Space.com, Space.com, 6 Apr. 2012, img.purch.com/w/660/aHR0cDovL3d3dy5zcGFjZS5jb20vaW1hZ2VzL2kvMDAwLzAxNi80NzEvb3JpZ2luYWwvc3BzLWFscGhhLXNvbGFyLXBvd2VyLmpwZw==.

"E-ZPass." Your Dictionary, Your Dictionary, 2017, www.yourdictionary.com/rfid-tag.

- Ganssle, Jack. "A Designer's Guide to RFID." *Digikey Electronics*, 2 May 2013, www.digikey.com/en/articles/techzone/2013/may/a-designers-guide-to-rfid.
- Ganssle, Jack. "Typical Passive Tags." *Digikey Electronics*, Digikey, 2 May 2013, www.digikey.com/en/articles/techzone/2013/may/~/media/Images/Article Library/TechZone Articles/2013/May/A Designers Guide to RFID/article-2013may-a-designers-guide-fig1.jpg.

References (continued)

Goetzberger, Adolf et.al. Crystalline Silicon Solar Cells. Chichester: John Wiley & Sons Ltd., 1998.

Green, Martin A. Solar Cells: Operating Principles, Technology, and System Applications. Englewood Cliffs: Prentice-Hall, Inc., 1982. Full book ordering information at www.pv.unsw.edu.au.

"IV. Atmospheric Effects on Solar Intensity." SolarWiki, Libretexts, 17 Dec. 2013, photon.libretexts.org/The_Science_of_Solar/Solar_Basics/B. Basics_of_the_Sun/IV. Atmospheric_Effects_on_Solar_Intensity.

Maneesilp, Jullawadee, et al. "RFID Support for Accurate 3D Localization." IEEE Transactions on Computers, vol. 62, no. 7, July 2013, pp. 1447-1459. EBSCOhost, doi:10.1109/TC.2012.83.

Mankins, John C. The Case for Space Solar Power. Virginia Edition Publishing, 2014.

- "RFID Figure." National Instruments, National Instruments, 19 Dec. 2013, www.ni.com/cms/images/devzone/tut/dhall RFID figure3.jpg.
- Riley, Martyn, and Iain Richardson. "Reed-Solomon Sodes." *Reed Solomon Codes*, Carnegie Mellon University, 1998, www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html.
- Shirvani Moghaddam, Shahriar. "Modeling the Environmental Effects on the Radiated Fields of a Passive RFID System." International Journal of Applied Electromagnetics & Mechanics, vol. 42, no. 4, Aug. 2013, pp. 539-559. EBSCOhost, doi:10.3233/JAE-131683.

References (continued)

Schwartz, David. "Radio Waves." Clker.com, Clker.com, 8 Oct. 2011, www.clker.com/cliparts/z/R/U/c/e/n/radio-waves-md.png.

"SitTF." Ux.stackexchange.com, Ux.stackexchange.com, 2 June 2015, i.stack.imgur.com/SitTF.png.

"SL13A-AQFM." PEAWO, PEAWO, 2018, s21.cdn.peawo.com/24145282-large_default/SL13A-AQFM.jpg.

"Smart Security RFID Tags Apparel." RFIDLabelTags.com, Rfidlabeltags.com, 2017, www.rfidlabeltags.com/photo/pl13010699-smart_security_rfid_tags_apparel_rfid_tags_clothes_retail_inventory.jpg.

Smiley, Suzanne. "Active RFID vs. Passive RFID: What's the Difference?" RFID Insider, RFID Insider, 4 Mar. 2016, blog.atlasrfidstore.com/active-rfid-vs-passive-rfid.

Swedberg, Claire. "Embedded RFID." RFID Journal, RFID Journal, 23 May 2012, www.rfidjournal.com/lib/x/a/assets/2012/05/9543-3.jpg.

